LETTERS

This article was published in ASHRAE Journal, January 2019. Copyright 2019 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org.

Do OA Economizers Make 'Cents' In Hospitals?

The article that appeared in the November ASHRAE Journal on "Do OA Economizers Make 'Cents' in Hospitals?" by Dan Koenigshofer was spot-on with regard to its assessment on the economic merits of airside "free-cooling" systems as applied in healthcare environments.

Taking Dan's analysis one step further, if simultaneous cooling/heating opportunities are identified and a heat-recovery chiller implemented to help satisfy these demands, even larger life-cycle advantages can be achieved. Turning off air (or water) side economizers and turning on the chiller to both cool and heat the building can be up to 40% more cost-effective than operating on free-cooling in the winter.

Other advantages include the reduction or elimination of cooling tower energy/water/chemical use, reductions in boiler gas consumption and GHG emissions, and drastically decreasing the amount of humidification that must be produced to properly hydrate large quantities of dry outdoor air. Chiller heat recovery will also contribute to cutting energy costs directly attributed to reheat, which can consume up to 60% of a typical hospitals natural gas use.

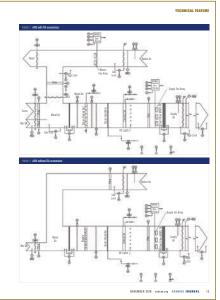
As a side benefit, important space air pressurization requirements can be left in-check as the airhandling system can operate at its minimum OA settings all year long. TECHNICAL FEATURE

Do OA Economizers Make 'Cents' in Hospitals?

The advantages of chiller heatrecovery, coupled with the elimination of free-cooling, are broad in both application and scope. I believe this combination would prove cost effective almost anywhere in the U.S. As Dan most wisely suggests, it's time for engineers to start running the calculations in their own climate zones to see for themselves.

> David N. Schurk, Member ASHRAE, Houston, Texas

The Author Responds


Thanks for your letter about our article. I'm glad that you agree with us.

In general, I agree that heat recovery chillers (HRC) are a good idea. We have found them difficult to actually implement because:

1. You must be able to utilize all the warm water to maximize payback of the HRC. The HW demand needs to be continuous and piped to the HRC.

2. DHW demand, even in hospitals, falls to near 0 at night so you can't cool the HRC.

3. Many hospitals do not have

DHW piped to their CEP.

4. It is difficult to heat or reheat with ~120°F water, unless the coils are designed for this temperature. In practice existing coils are usually designed for 160°F to 180°F EWT.

5. As you raise the temperature of the condensing water, the HRC efficiency drops.

6. The economics are best when gas is expensive, which it is not now.

In my ALI class I praise HRCs, but note the above caveats during the design. Generally, I've found them best in new construction.

> Dan Koenigshofer, P.E., Member ASHRAE, Chapel Hill, N.C.

ASHRAE Journal welcomes letters to the editor. The letters should be no more than 250 words and must relate to an article published in ASHRAE Journal.

Please send your letters to journaleditor@ashrae.org.